Leveraging Regulatory Science to Succeed at CDRH
CDRH announced its top 10 Regulatory Science Priorities for Fiscal Year 2016, and stated that these priorities are more than a mere philosophical statement of topics of interest; rather, these priorities are expected to influence CDRH intramural funding decisions.
Regulatory science is the science of developing new tools, standards, methods, and approaches with the goal to assess the safety, efficacy, quality, and performance of all FDA-regulated products. By leveraging regulatory science, the FDA’s Center for Devices and Radiological Health (CDRH) intends to facilitate medical device innovation and to improve decision making in the areas of premarket evaluation, post-market surveillance, and compliance under a total life cycle framework.
To this end, CDRH created a Regulatory Science Subcommittee in 2013, an advisory group of CDRH leaders and staff charged with proactively enhancing medical device innovation, development, safety, quality, and effectiveness through the development of policies and practices to incorporate new science and technological innovation into regulatory decision making. The end objective is to achieve a positive overall impact on public health. Regulatory science embraces many fields, including engineering, medicine, chemistry, toxicology, epidemiology, statistics, and social sciences.
CDRH has set upon a cyclical approach to setting regulatory science priorities involving first a phase of critical review and assessment followed by an announcement of priorities and then finally implementation.
Its most recent action in this approach occurred in October 2015, when CDRH announced its top 10 Regulatory Science Priorities for Fiscal Year 2016. CDRH has stated that these priorities are more than a mere philosophical statement of topics of interest; rather, these priorities are expected to influence CDRH intramural funding decisions. This means that sponsors should take note of the strong message intended by these priorities. Sponsors can learn important lessons and should be able to leverage these lessons into program enhancements that will lead to greater success in the areas of premarket review, post-market product surveillance, and overall total life cycle management of their medical devices. This article will examine CDRH’s top 10 priority regulatory science initiatives and offer some suggestions of how to leverage regulatory science.
CDRH Top 10 Regulatory Science Priorities for 2016
CDRH’s top 10 list of regulatory science priorities, all assigned equal importance by CDRH, follow.
- Leveraging Big Data
The existence of Big Data warehouses like the human genome sequence data base, clinical trials databases, and insurance databases means that a wealth of scientific and clinical information, potentially relevant to the safety and performance of medical devices, is available to be mined for those willing to expend the effort. The development of informatics capabilities and information technology that can harvest, validate, organize, and disseminate these data will likely pay dividends in both the premarket review process and the post-market surveillance of newly approved medical devices.
- Evidence Synthesis
In a related fashion to the Big Data priority, CDRH believes that while most regulatory decisions are based on information provided solely by a device’s manufacturer, opportunities exist to synthesize data from numerous evidence sources to improve the quality of regulatory decision making. Observational data on device use in the marketplace available from health care databases as well as data from the scientific literature are readily available and minimal effort could result in the development of data enabling better insights into both the device approval process and safety signal identification in a post-market setting.
- Medical Device Reprocessing
Since the 1976 enactment of the Medical Device Amendments, CDRH has, to say the least, not been a fan of medical device reprocessing and reuse. Reuse of devices introduces risks not intended by the original manufacturer such as the risk of infection transmission between patients and compromise of performance and safety characteristics.
Balancing these concerns against the practical reality that device reprocessing and reuse is driven by the marketplace and efforts to constrain costs, CDRH is requesting a more comprehensive approach to assess the use of reprocessing techniques. Recognizing that safety , effectiveness, performance, and quality can only be assured through such a comprehensive approach, CDRH is challenging advocates of reprocessing to begin their evaluation at the design consideration phase employing human factors considerations along with reprocessing methodology development and validation for reprocessing, cleaning, and disinfection. Validated release testing, analogous to the initial “original” release, is considered a critical element as well.
Given the practical experience in the marketplace with the transmission of infectious agents via reusable endoscopic equipment, as reported broadly in the news media in January 2015, CDRH’s demands seem not only reasonable, but just basic good sense. Manufacturers of reusable equipment and medical device reprocessors should be paying close attention to this priority statement.
- Computational Modeling